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Spreading dynamics of terraced droplets
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The liquid crystal 7̄S5 spreads as a two-terraced droplet on an oxide covered~100! Si wafer. The thickness
of the upper and lower terraces are respectively;200 and;40 Å . This is the simplest system for which the
de Gennes and Cazabat~dGC! terraced spreading model@C. R. Acad. Sci. II310, 1601~1990!# is applicable.
We find that soon after the upper terrace acquires a flat top a hole develops in the center of this terrace. The
hole propagates down to the depth of the first terrace. In this contribution we demonstrate that the dGC model
is unstable to the formation of a hole in the center of the upper terrace for a two-terraced droplet. Our extended
dGC model, which includes a hole in the upper terrace, provides a reasonable description of theaverage
spreading dynamics for this system. However, this model has difficulties quantitatively accounting for all of
the features exhibited by the dynamics, perhaps because experimentally the inner and outer borders of the
upper terrace become irregular with time. These irregularities in the borders have not been included within the
model.@S1063-651X~99!04006-4#

PACS number~s!: 68.10.Gw, 68.15.1e, 61.30.2v, 68.45.2v
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I. INTRODUCTION

The spreading of liquid droplets is very important for
understanding of lubrication, molecular scale friction, a
coating dynamics@1,2#. One of the most interesting feature
observed in the spreading of nonvolatile liquid droplets
completely wettable surfaces is the formation of molecu
size terraces which precede the spreading of the macrosc
droplet across the surface. These first few molecular lay
are frequently called precursor layers. The existence of
cursor films has been known since early in the century@3#
but only recently have sufficiently sensitive experimen
techniques been used to quantify their existence. The pre
sor film can take a number of different forms. It can eith
vary continuously from a molecular size at the precursor fi
tip to a mesoscopic or macroscopic size at the droplet ce
@4# or it can consist of one or more terraced layers at the e
of the mesoscopic or macroscopic droplet@5#. When terrac-
ing is present the droplet may acquire the shape of a very
pyramid. Cazabat and co-workers@6# provide a fascinating
catalog of the many diverse forms that a spread
‘‘pyramid-shaped’’ droplet can take under differing cond
tions. The reasons for the differing shapes of the precu
film are not completely understood at this time, however
is believed to depend upon many different factors such as
atomic scale friction, the long and short-range interactio
between the fluid molecules and the substrate, smectic la
ing induced by the presence of a hard boundary, and
presence of any adsorbed water molecules. These experi
tal studies have stimulated numerous theoretical invest
tions @7,8# and computer simulations@9#, however, this field
is far from understood either theoretically or experimenta

In Ref. @7# de Gennes and Cazabat~dGC! have developed
a conceptually simple model of terraced spreading w
many terraces can be present. They assume that terra
exists and then determine the motion caused by the pe
ation of molecules from an upper terrace to a lower terr
assuming that the fluid at each terrace is incompressible.
PRE 591063-651X/99/59~6!/6699~9!/$15.00
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motion is somewhat complicated because the motion of
terrace is coupled to the motion of other terraces. Caza
and co-workers@5# have observed terraced droplets in ma
different types of systems, however, the terraces that she
co-workers have observed frequently have rounded ed
~with rounding;0.120.5 mm@10#! or alternatively posses
sloping terraces@11# or a rounded droplet on top of the upp
terrace. These terraced droplets therefore do not conf
precisely to the situation studied theoretically by dGC wh
they assume flat terraces with sharp edges between ter
~Fig. 1!. A more ideal terraced droplet was observed by D
llant, Zalczer, and Benattar@12# for the liquid crystal 8CB
spreading on a~400! silicon wafer where three terraces wit
flat tops and sharp edges were observed. Curiously nea

FIG. 1. Sketch of a two-terraced droplet as a function of rad
distancer from the center of the drop. The first and second terrac
respectively, possess a thickness ofa andb. The second terrace ha
an inner border~or hole! at R3 and outer border atR2, while the first
terrace has a border atR1. The chemical potential at each of thes
free borders ism i5Wi . Permeation from the second terrace to t
first terrace is much greater nearR2 than nearR3. The permeation
near R2 causes a drop in chemical potential atr 5R22L of m2

5W22Dp, which drives the flow in the second terrace and
creases the size of the hole atR3. Our model is restricted to the cas
where the permeation lengthj!Ri andj!R22R3.
6699 ©1999 The American Physical Society
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later part of the spreading dynamics, when only two terra
remained, holes were observed to form in the upper terr
Daillant, Zalczer, and Benattar did not study the hole dyna
ics in detail nor did they provide an explanation for t
growth of holes.

The ideal system to apply the dGC model to is one wh
consists of terraces possessing both perfectly flat tops a
sharp edge between terraces. In this paper we desc
the spreading dynamics of such a system. The sprea
dynamics of the liquid crystal 4-n-pentylphenyl-48-
n-heptyloxythiobenzoate (7S̄5) on an oxide covered~100!
silicon wafer, at the later stages, consists of only two terra
which possess flat tops and sharp edges between ter
~that is edges which are sharper than our spatial resolutio
;10 mm). As in Ref. @12# we find that this two terraced
droplet spreads via the formation of a hole, that in our ca
is at the center of the second terrace.

In this paper we are primary interested in the final sta
of terraced spreading when only two terraces exist wit
hole at the center of the upper terrace. The scope of
paper is not to explain the terraced structure or the nuclea
of the hole, rather our purpose is to use a simple heuri
model, specifically the dGC model, to describe the aver
spreading dynamics without taking into account the deta
internal structure of the liquid crystal. In this model terrac
of constant thickness are assumed to be present. We ex
this model to include a hole at the center of a two-terra
droplet; surprisingly, despite the simplicity of this model
reasonable qualitative description of the spreading dynam
for the liquid crystal 7̄S5 is obtained.

II. EXPERIMENTS

The ~100! silicon wafer substrates that we use were p
chased from Semiconductor Processing Company. They
polished on one side and possessn-type phosphorus doping
a resistivity of 1210 V cm and dimensions of 3.833.8
30.32 cm3. The surface is typically covered by a unifor
oxide layer of thickness;20 Å . The silicon wafers go
through a rigorous cleaning procedure before use. They
first cleaned with an ‘‘organic mixture’’ consisting of a so
lution of H2O1H2O21NH4OH in the ratio 6:1.5:1 for 15
min at 75 °C followed by cleaning in a ‘‘metallic mixture’
consisting of H2O1H2O21HCl in the ratio 7.5:1.5:1 for 15
min at 75 °C. These two cleaning procedures remove,
spectively, most trace organic and metallic impurities fro
the surface@13#. The wafer is finally rinsed in distilled deion
ized water and then vapor degreased in isopropyl alco
@14#. Isopropyl alcohol and water are completely miscible
that any residual water on the wafer surface is removed
the substrate can be readily dried in an oven at 110 °C w
out any observable ‘‘water stains.’’ Just prior to usage
wafers are uv ozone cleaned@15# for one hour to ensure th
absence of organic contaminants. After this procedure, c
plete wetting with water is achieved as an indication of
excellent quality of the cleaning procedure.

The liquid crystal 7̄S5, used in the experiments, posses
an interesting phase diagram@16#. On heating 7̄S5 melts at
53.5 °C and exhibits an isotropic-nematic phase transitio
82.1 °C on both heating and cooling. For bulk samples
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system can be supercooled to well below its melting point
nematic-smectic transition is observed at 37.0 °C while
system recrystallizes at 23 °C.

In our experiments a small crystal of 7S̄5 is deposited on
a clean Si wafer at room temperature using a glass micro
nipulator and an optical microscope. The volumeV of these
crystals varied between 10 and 60 pl. The Si wafer and liq
crystal were then placed inside a closed oven which w
rapidly heated to 55 °C. At this temperature the liquid crys
melts and spreads on the Si wafer surface as two well defi
terraces. The spreading dynamics are studied inside
oven, where the temperature variations are below 0.002
and the silicon wafer is situated on a solid copper block
order to minimize thermal gradients. Images of the drop
obtained with an ellipsometric microscope@17,18# whose
angle of incidence is fixed at the Brewster angle for the ox
covered Si wafer (uB575.5°). Imaging optics provide a spa
tial resolution of better than 10mm340 mm while the ver-
tical film thickness resolution is 1 Å . Theacquisition of each
image into a personal computer takes only a few secon
This time is short compared with the spreading time of ty
cally a couple of hours. The ellipsometric signal obtained
the microscope Im(r p /r s), wherer p andr s are, respectively,
the effective complex reflection amplitudes for thep and s
polarizations, is converted to thicknessh as a function of
position on the Si wafer substrate@19# by modeling each
point on the droplet as a homogeneous isotropic dielec
layer possessing an average refractive index ofn51.5 @20#.

III. EXPERIMENTAL RESULTS

The spreading of the droplets progresses through a n
ber of differing stages.

~1! In the first stage the droplet height profileh(r ), as a
function of the radial distancer from the center of the drop
let, possesses a rounded shape similar to capillarity do
nated spreading of any ordinary liquid. An extraordinary fe
ture of the droplet, at this stage, is the shape of the dro
border with the wafer; at the droplet border the thickne
decreases ‘‘precipitously’’ to the wafer value over a heig
of ;250 Å in less than our spatial resolution of 10mm.

~2! Next a precursor film of thicknessa'40 Å appears
at the border of the drop while the central part of the dr
still remains rounded@Fig. 2~a!, curve A#. Throughout the
spreading process the thickness of this precursor film is c
stant within our experimental resolution of 1 Å@21#. The
time when the precursor film first appears will be denoted
t0.

~3! With increasing time the central part of the drop b
comes progressively flatter and its maximum heighth2 ap-
proaches an asymptotic value ofhf5a1b in an approximate
exponential fashion@Fig. 3~a!#, whereb is the thickness of
the second terrace. When the height reaches this asymp
value, the central portion of the upper terrace is flat. It is
this stage that a hole first appears at the center of the se
terrace @Fig. 2~a!, curve B#. This hole rapidly propagate
down to the depth of the first terrace@Fig. 2~a!, curveC#. The
hole is initially quite circular however with increasing tim
the inner and outer edges of the second terrace are pro
sively ‘‘eaten’’ away and the borders may become irregu
@Fig. 2~b!#. Note that the thickness of the first and seco
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PRE 59 6701SPREADING DYNAMICS OF TERRACED DROPLETS
terraces,a and b, respectively, remainconstantthroughout
this later stage when a hole is present.

~4! Finally, the spreading stops when the second terr
disappears at timet f . The surface is then covered by a c
cular static layer of thicknessa.

It is convenient to measure events in terms of the norm
ized timeT5(t2t0)/t l wheret is time andt l5t f2t0 is the
‘‘lifetime’’ of the droplet measured from when the precurs
film first appears at timet0 until the time when the secon
terrace disappears att f . In terms of this normalized time th
first terrace appears atT50, the hole in the second terrac
appears approximately when the height of the second ter
becomes time independent atT.0.2 @Fig. 3~a!#, while the
spreading process finishes atT51.

In Fig. 3~a! we have plotted the maximum height of th
droplet h2 divided by its asymptotic valuehf5a1b as a
function of the normalized timeT defined above. In Fig. 3~b!
we show the time evolution of the average reduced radir i
5Ri /Rf for the first terracer 1, the second terracer 2, and for

FIG. 2. ~a! Height profile h(r ) for the liquid crystal 7̄S5 of
volume 60.5 pl spreading on a~100! Si wafer surface at differen
normalized timesT5(t2t0)/(t f2t0), T50.01 ~A!, 0.10 ~B!, and
0.77 ~C! wheret0 and t f represent, respectively, the time when t
precursor layer first appears and the time when spreading stop
B the hole of radiusR3 is just starting to form. For curveC the hole
has propagated to the depth of the first terrace, and the se
terrace is extremely flat on top with a sharp outer border of rad
R2. ~b! Two-dimensional image of the spreading droplet of curveC,
where the profile in~a! is a vertical cut through the center of drop
let. The gray bar corresponds to a length scale of 1 mm.
e

l-

ce

the holer 3, for three different volumes as a function ofT.
Here the radii have been divided by the final radiusRf

5AV/pa of the monolayer. For all of the data sets repr
senting three different droplet sizes the relative heighth2 /hf

@Fig. 3~a!# and the reduced radiir i @Fig. 3~b!# fall on an
approximate universal curve when plotted as a function
the normalized timeT. This universality holds despite th
fact that the thicknessesa and b vary considerably~in a
nonsystematic way! as the droplet volume is increased fro
10 to 60 pl. The cause for this variation ina andb could be
due to slight differences in the amount of water vapor a
sorbed on the Si wafer for different experiments; the pr
ence of water vapor is known to influence the spreading
netics in other experiments@22#.

In analyzing the ellipsometric images of the droplet w
have assumed that the density and refractive index of
drop are constant and equal to their bulk values. The volu
of the droplets can be measured to an accuracy of appr
mately 1%. From data for the larger droplets we estim
that there was a systematic decrease in volume of the o
of 0.5% per hour, which is probably due to slow evaporatio

In

nd
s

FIG. 3. ~a! Relative height (h2 /hf) of the second terrace as
function of the normalized time (T), where hf5a1b is the
asymptotic height. The extended dGC model is expected to be m
accurate forh2 constant, namely, forT.0.2. ~b! Experimental time
evolution ~symbols! of the average, normalized radius of the pr
cursor (r 1), second terrace (r 2), and hole (r 3) for droplet volumes
of 9.15, 24.4, and 60.5 pl, wherer i5Ri /Rf and Rf is the
asymptotic radius of the first terrace. The solid line represents
to the extended dGC model@Eqs.~26!–~29!# with j/Rf50.0025 for
fixed b/a55.5.
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The total spreading time was 1 to 4 hours so that the eff
due to evaporation are small.

We have checked that the hole in the second terrace
forms ~i! at 60 °C and~ii ! in an environment of higher liquid
crystal vapor pressure at 55 °C. The dynamics in both
these situations was similar to the results reported in
publication. This suggests that the appearance of the ho
not related to the proximity to the melting point or to th
presence of slow evaporation.

IV. MODEL OF de GENNES AND CAZABAT

The dGC model@7# for terraced droplets describes th
evolution of drops structured in terraces of equal thickn
assuming that the molecules evolve as a two dimensio
incompressible fluid in each terrace where the fluid perm
ates from the upper terrace to the lower terrace only in a
annulus at the borders of each terrace. This model does
explain why the droplets are terraced, but allows the com
tation of the time evolution of the radius of each terra
Here we adapt this model for droplets possessing two
races of differing thickness. Most of these formulas are
rived in Ref.@7#, but we shall include them here for clarity
In the following section we extend the dGC model by inco
porating a hole at the center of the second terrace. For th
readers whose main interest is in a comparison between
extended dGC model and experiment the remainder of
paper has been written so that the theory in Secs. IV–VI
be omitted without a significant loss in understanding of S
VII where this comparison is made.

In the dGC model we assume that the first terrace ha
thicknessa and the second terrace has a thicknessb ~Fig. 1!.
The three main assumptions of this model are as follows

~a! In the zones where there are two terraces, the fl
descends by permeation from the second terrace to the
with a flux ~volume/area/time! given by

Jz~r !5C@m1~r !2m2~r !#. ~1!

The flow is downward when the fluxJz is negative.C.0 is
the permeation constant@23#, m1(r ) and m2(r ) are the
chemical potentials in the first and second terraces, res
tively, given bym i(r )5m01vp(r )1Wi . m0 is a~irrelevant!
reference chemical potential,p(r ) is the relative pressure
with respect to the atmospheric pressure,v is the molecular
volume, andWi represent the interaction of a molecule
terracei with the solid substrate.W152S0S whereS0 is the
monolayer spreading coefficient andS is the area per mol-
ecule while, for nonretarded dispersion interactions,W2;
2Av/(a1b)3 whereA is the Hamaker constant. For sprea
ing across the substrate we require that bothW1 andW2 are
negative withuW1u.uW2u. At the terrace borders, the relativ
pressure is zero and thus, the potentials arem i5Wi .

~b! The molecules move along each terrace according
the equation for incompressible flow. Therefore, the m
conservation equation for two-dimensional flow in each t
race is given by

a div V152Jz , ~2!

b div V25Jz , ~3!
ts
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where Vi is the horizontal velocity along terracei and
div V51/r ](rV)/]r represents the divergence operator
radial symmetry. In the sections of the drop where only
first terrace exists, namely, forr .R2, we have simply
divV150.

~c! The velocities and the chemical potentials are rela
by the simple linear relationships

2¹m15z1V11z~V12V2!, ~4!

2¹m25z~V22V1!, ~5!

wherez1 andz are the friction coefficients between the fir
terrace and the substrate and between the two terraces
spectively. If the flow in the second terrace can be descri
by the equations for a viscous fluid thenz5hv/b2, whereh
is the macroscopic viscosity of the fluid. In general, the va
of z1 will depend upon the details of the fluid-solid intera
tion.

If we take the difference between Eqs.~4! and ~5! and
apply the divergence to both sides then using Eqs.~1!–~3!,
we obtain the differential equation

¹2~m12m2!5
m12m2

j2
, ~6!

where the permeation length is

j5@C„2z~1/a11/b!1z1 /a…#21/2. ~7!

This is the characteristic length scale over which permea
occurs between the terraces.

Following dGC, we restrict ourselves to cases where
permeation is concentrated in a narrow region of the orde
j near the border atR2, with

j!R2 . ~8!

Thus, in this region¹2'd2/dr2, and from Eq.~6!,

m22m1.D exp@~r 2R2!/j#, ~9!

where D is a constant that determines the difference
chemical potentials between the second and the first ter
at r 5R2. An expression forD will be determined later in
this calculation. We havem15m2 if r ,R22L; hereL is the
size of the permeation annulus~Fig. 1! and

j!L!R2 , ~10!

where, for example,L;5j.
The horizontal velocities within the permeation region f

each terrace can now be determined by integrating Eqs~2!
and ~3! and computing the flux from Eqs.~1! and ~9!,

V15
C

a
jD exp@~r 2R2!/j#, ~11!

V252
C

b
jD exp@~r 2R2!/j#, ~12!

wherer is restricted to the regionR22L,r<R2. We have
assumed that the velocities atR22L are negligible.
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Within the regionR2,r ,R1 only one layer is present
consequently there is no permeation and divV150 @Eq. ~2!#,
2¹m15z1V1 @Eq. ~4!#, and therefore¹2m150. Thus, in
this region,

m15~W22W12D!
ln~R1 /r !

ln~R1 /R2!
1W1 , ~13!

where this equation satisfies the boundary conditi
m1(R1)5W1 andm1(R2)5W22D @see Eq.~9!#. The corre-
sponding velocity field is

V152¹m1 /z15
W22W12D

z1r ln~R1 /R2!
. ~14!

Now we can determine a value forD by matching the ve-
locities atr 5R2 using Eqs.~11! and ~14!. We obtain

D5
W22W1

Cjz1R2 ln~R1 /R2!/a11
;O~j/R2!, ~15!

where the order of the approximation forD was estimated
using Eq.~7!. It is interesting to note thatD is positive and
therefore according to Eqs.~1! and ~9! the vertical flux is
negative corresponding to a downward flow as one wo
expect for spreading droplets.

Finally, the velocity at the border of the first terrace
equal to the growth of the radiusR1, therefore,

R1

dR1

dt
5

W22W12D

z1ln~R1 /R2!
~16!

from Eq. ~14!. The evolution of the second terrace may
obtained from Eq.~16! together with the conservation o
volume V5paR1

21pbR2
25const. More details about thi

model can be found in Ref.@7#.

V. GROWTH OF THE HOLE

Now we shall demonstrate that the above solution is
stable with respect to the appearance of a hole at the ce
of the second terrace. Let us assume that a small hol
radiusR3 is initially created~by some agent not included i
this model! at the center of the droplet~Fig. 1!, where the
thickness inside the hole isa and the velocityV1 must be
zero since the first layer has constant thickness. At the bo
R3 of this hole, the chemical potential will bem25W2. How-
ever, as we will demonstrate, the permeation in the ne
borhood ofR2 creates a local drop in the chemical potent
~Fig. 4! and as a consequence of this gradient in chem
potential, fluid flow will occur in the second terrace betwe
R3 andR2.

In order to compute the drop in the potential due to
permeation nearR2, we integrate Eq.~5! using the expres-
sions for the velocities given in Eqs.~11! and ~12!. We find
that at a small distanceL from the border of the secon
terrace

m2~R22L !5m2~R2!2Dp , ~17!

where
s

d

-
ter
of

er

-
l
al

e

Dp5zCDj2~1/a11/b!;O~j/R2!. ~18!

Here we have assumed that the velocities atr ,R22L are
very small compared with the velocities in the vicinity ofR2.
In determining the order of the approximation forDp we
have used Eqs.~7! and ~15!. Permeation also occurs atR3
but, as we will show later, it is much smaller than the p
meation atR2. In fact,

Jz~R3!;~j/R3!Jz~R2!. ~19!

The flow in the regionR3,r ,R22L is approximately
governed by¹2m2'0 sincem1'm2 in this region~because
the permeation is negligible!. This condition form2 can be
deduced from Eqs.~1!–~3! and ~5!. Therefore, the chemica
potential must have the form

m252Dp

ln~r /R3!

ln@~R22L !/R3#
1W2 , ~20!

which satisfies Eq.~17! andm2(R3)'W2.
Within the second terrace at a distance much greater

j from the bordersm1'm2 and, therefore, from Eqs.~4! and
~5!,

V2~r !5
z112z

2z
V1~r !. ~21!

FIG. 4. Comparison of the chemical potentials,m1 andm2, as-
sumed in Secs. IV and V in the regionR3,r ,R2 with an exact
numerical solution determined in the Appendix. In Sec. V we
sume thatm1'm2 for R3,r ,R22L, whereL;5j; the logarith-
mic approximation form2(r ) @Eq. ~20!# in this region is shown as
open circles. The exact numerical solutions of Eqs.~A1! and ~A2!
for m1 andm2 are shown as solid lines. AtR251 andR350.4 the
chemical potential differencem22m1 is described, respectively, b
the termsD andD3. The large difference betweenD andD3 shown
in this figure indicates that the permeation atR2 is much greater
than the permeation atR3 @Eq. ~19!#. We also show the approximat
exponential solutions form1 and m2 ~dotted lines! in the region
R22L,r ,R2 determined from Eqs.~4!, ~5!, ~11!, and~12!.
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The corresponding velocity field in this region is given by

V2'
2z1z1

z

Dp

z1

1

r ln~R2 /R3!
, ~22!

where we have used Eqs.~5!, ~20!, and ~21! to obtain this
result.

All the mass that comes from the hole is transported
the flow in the two terraces, therefore

2pbR3

dR3

dt
52paR3V1~R3!12pbR3V2~R3!, ~23!

and using Eqs.~21! and ~22! we obtain a differential equa
tion that describes the growth of the hole

R3

dR3

dt
'S a

b
1

z112z

2z D 2Dp

z1 ln~R2 /R3!
, ~24!

whereDp is given in Eq.~18!.
In order to obtain the time evolution of a drop, we mu

integrate this equation together with the conservation
mass

V5paR1
21pb~R2

22R3
2!5const ~25!

and the equation for the outer terrace, Eq.~16!. Corrections
to Eq. ~16! due to the permeation atR3 are only of order
j2/R2R3 and can therefore be neglected.

These evolution equations which describe the spread
dynamics of a two-terraced droplet, Eqs.~16!, ~24!, and~25!,
can conveniently be written in terms of a dimensionless
dius r i5Ri /Rf and a dimensionless timet5t/tc where the
characteristic time istc5Rf

2z1 /(W22W1):

r 1

dr1

dt
5

1

ln~r 1 /r 2! S 12
D

W22W1
D , ~26!

r 3

dr3

dt
5

2~a/b1z1/2z11!

ln~r 2 /r 3!

~11a/b!~z/z1!

~2z/z1!~11a/b!11

D

W22W1
,

~27!

the dimensionless potential drop is given by

D

W22W1
5

1

~Rf /j!r 2ln~r 1 /r 2!/@112z/z1~11a/b!#11
,

~28!

and the dimensionless conservation of mass is now

r 1
21~r 2

22r 3
2!b/a51. ~29!

Equations~26!–~29! can readily be solved numerically b
standard methods, for instance, using a Runge-Kutta sch
@25#. At t50, the initial condition isr 15r 25Aa/(a1b)
from Eq. ~29! with r 350.

VI. RANGE OF VALIDITY FOR THE EXTENDED dGC
MODEL

According to our approximations thus far Eqs.~11! and
~12! will continue to describe the velocity flow in the imme
diate vicinity of R2 provided that the absolute magnitude
y

t
f

g

-

me

the velocity V2 at R2 calculated from Eq.~12! is much
greater than the velocity field determined from Eq.~22! also
evaluated atR2. This condition may be written as

j/R2!
z1

2z1z1

1

b/a11
ln~R2 /R3!. ~30!

In this publication we assume small permeation lengthj
compared withRi and therefore the approximation~30! is
valid provided that we are not too close to the complet
time for spreading whereR2'R3. If Eq. ~30! is well satisfied
then our analytic expressions form i are very accurate. In Fig
4 we compare Eq.~20! for m2 in the regionR3,r ,R22L
~open circles! with an exact numerical solution of the equ
tions form1 andm2 ~solid lines! given in the Appendix for a
specific set of values forR1 , R2 , andR3. In the same figure
we also show our solutions form1 and m2 ~dotted lines! in
the region R22L,r<R2 determined from Eqs.~4!, ~5!,
~11!, and~12!. The analytic expressions agree with the ex
numerical solutions extremely well in the bulk of the dro
where the logarithmic approximation holds Eq.~20!, and in
the vicinity of R2; these are the two regimes which primar
determine the flow behavior of the drop.

In Sec. V we also assumed thatm2 is approximately equa
to W2 in the vicinity of R3 @Eq. ~20!#. This is a reasonable
assumption because the potential difference at a small
tance j from the border R3 is of the order of Dm
;V2(R3)zj according to Eqs.~5! and ~21!; this quantity is
of order Dpj/R3 ln(R2 /R3);O(j2/R2R3) using Eq.~22!, and
thus, negligible with respect toDp . This means that in the
neighborhood ofR3 there is permeation, but it does not si
nificantly affect the chemical potential.

We are now in a position to compare the permeation atR3
to the permeation atR2. The permeation flux nearR3 is
given by

Q35E
R3

R31j

Jz~r !2pr dr'2pR3CD3j, ~31!

where we have used the equation for the vertical flux
position r,

Jz~r !5C@m1~r !2m2~r !#5CD3 exp@~R32r !/j#, ~32!

andD3 represents the chemical potential difference betw
the first and second terrace atR3. @Equation~32! is analo-
gous to Eqs.~1! and~9! applied atR3.# This permeation flux
creates a velocity fieldV1 in the first terrace,

2pR3CD3j52pR3aV1~R3!. ~33!

Therefore, the difference between the potentials in the
terraces isD35V1(R3)a/Cj, and, by using Eqs.~18!, ~21!,
and ~22!, we find that

D3;Dj/R3 ln~R2 /R3!. ~34!

This equation corresponds precisely to the statement give
Eq. ~19! @using Eqs.~1!, ~9!, and~32!#.
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VII. ANALYSIS AND COMPARISON WITH EXPERIMENT

In Secs. IV and V we have derived equations@~16!, ~24!,
and~25!# which completely describe the dynamics of a tw
terraced droplet possessing a hole at the center of the se
terrace~Fig. 1!. Dimensionless forms for these equations a
also given in Eqs.~26!–~29!. These equations are valid pro
vided that the inequality given in Eq.~30! holds. This in-
equality corresponds approximately to the condition that
permeation lengthj!R22R3, so the equations become in
valid near the spreading completion time whenR2'R3.
From Eqs.~26!–~29! the evolution dynamics are complete
determined by the dimensionless ratiosj/Rf , z1 /z, andb/a.
As noted by dGC, the evolution of the dimensionless rad
r 1 @Eq. ~26!# is relatively insensitive to the permeation d
namics because the dimensionless potential dropD/(W2
2W1), Eq. ~28!, is proportional toj/Rf which is assumed to
be much smaller than one. However, the growth of the h
@Eq. ~27!#, represented by the dimensionless radiusr 3, is
directly proportional to D/(W22W1) and therefore ex-
tremely sensitive to the permeation dynamics.

In order to be able to compute the solution of these e
lution equations, we will assume that each terrace acts
viscous fluid, so thatz1 /z5(b/a)2. This assumption is ex
pected to be a valid approximation for the second terrace@7#,
namely,z5hv/b2, while for the first terrace Fraysseet al.
@10# have essentially demonstrated that (W22W1)/z1 is pro-
portional to 1/h, whereh is the bulk viscosity and therefor
from dimensional considerations we expect thatz1'hv/a2.
Helfrich @23# has used a similar relationship for the frictio
coefficient to describe the unusual flow behavior of sme
liquid crystals in small capillaries.

In order to examine the sensitivity of the curves
changes in the permeation length we have plottedr i as a
function of the normalized timeT5t/t l ~Fig. 5! where t l
'0.44 is the dimensionless time when the second terr
disappears. In this calculation we have setb/a55.5 ~the av-
erage experimental value! and variedj/Rf ; the dotted and
dashed lines correspond, respectively, toj/Rf50.001 and
0.01. As expectedr 1 is not very sensitive to this paramet
while r 3 depends sensitively uponj/Rf . The cusp inr 2 and
r 3 nearT51 is caused by the failure of Eq.~30! when our
analytic approximations are no longer valid. In this figure
have also plotted the curves forb/a53.0 andj/Rf50.001
~solid lines! where in this calculation the dimensionless lif
time t l50.34. One observes from the two curves whe
j/Rf50.001~solid and dotted lines! that the magnitude ofr 3
and the behavior in the region wherer 2'r 3 ~near the
completion time atT51) are relatively insensitive to th
value ofb/a.

We now compare the extended dGC theory with exp
ments. In Fig. 3~b! we have plotted the averaged normaliz
radius r i5Ri /Rf as a function of the normalized timeT
5(t2t0)/t l for three different droplets with volumes varyin
from 9 to 60 pl~symbols!. As defined above,t l5t f2t0 is the
spreading lifetime when the second terrace disappears
the spreading stops. Our model is strictly valid only whena
and b are time independent, which according to Fig. 3~a!
occurs whenT.0.2. We have fixedb/a55.5, the experi-
mental average value, and allowedj/Rf to vary in order to
find the best fit to the experiments~solid lines!, which occurs
nd
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for j/Rf50.0025. From this value forj/Rf we determine the
permeation lengthj for each droplet. The average perm
ation length of approximately 3mm is consistent with the
experimental observation that the step edge between the
and second terraces atR2 is sharper than our experiment
resolution of;10 mm. If the permeation lengthj happened
to exceed our experimental resolution we would expect
observe rounding at the border between the two terra
Table I exhibits a considerable variation between the per
ation lengths for different droplets. The thicknessa of the
first terrace also shows a large variation between drop
which could be indicative of differing molecular propertie
within the terrace, which according to Ref.@24# could give
rise to different values forj.

Following Ref. @10#, from Eq. ~26! with D/(W22W1)
!1, we determine that the quantityR1 ln(R1 /R2)dR1 /dt is
approximately independent of time; this quantity provides
value for the ‘‘diffusion coefficient’’ D5(W22W1)/z1
5(1.660.3)31026 cm2/s for the three droplets~Fig. 6 and
Table I!. The dimensionless terrace lifetime calculated fro
t l(expt)5t l /tc5(t f2t0)(W22W1)/z1Rf

250.560.1, and
given in Table I for the three drops, agrees within expe
mental errors with the numerically determined dimensionl
lifetime of t l50.44 forb/a55.5.

The agreement between theory and experiment is o

FIG. 5. Theoretical evolution curves determined from Eq
~26!–~29! for b/a55.5 ~the experimental average! and j/Rf

50.001 ~dotted lines! and 0.01~dashed lines!. We also show the
influence of varying the quantityb/a; the solid lines are forb/a
53.0 andj/Rf50.001.

TABLE I. Experimental droplet parameters.

V ~pl! a ~Å! b/a
t15t f2t0

~s!
j

~mm! D ~cm 2/s) t1 (expt)

9.15 34.3 5.44 3980 2.3 1.2631026 0.59
24.4 45.2 7.86 3740 3.3 1.7031026 0.37
60.5 40.6 3.19 15 400 5.4 1.7931026 0.58



or

te
al
t
e

nt
th
e

a
ity
e

s

a
of
ly
ap
d
v

he
ac

tw

it
ab
is
af

n to
de
per
for

sing

the
n
ace
the

lets
t

-
the
the

n

ly
er

e a
ed
be-

pla-
ce.

ob-
ond
e-
-
an

nal
33

ion

-
if-

as-

n
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qualitative@Fig. ~3!#; approximate agreement is obtained f
the shape of the reduced radii curvesr i as a function of the
normalized timeT. The experimental data exhibits a grea
universality in form which is much less sensitive to the v
ues ofb/a andj/Rf than theory would indicate. We do no
believe that the discrepancies between theory and experim
are caused by our assumption thatz1 /z5(b/a)2. We have
also considered other limiting cases, such asz1 /z@1 and
z1 /z!1; the parameterz1 /z cannot improve the agreeme
between theory and experiment. We believe that part of
problem may be due to the irregular inner and outer bord
of the second terrace@Fig. 2~b!#; R2 and R3 only represent
the average radii for these borders. These irregularities
not included within the theory; they indicate that the veloc
flows at the borders of the second terrace, at any instanc
time, are far more complicated than described by Eqs.~11!,
~12!, and~24!.

VIII. SUMMARY

In this paper we have studied the spreading dynamic
microdroplets (9260 pl) of the liquid crystal 7̄S5 on a mo-
lecularly flat, uv-ozone cleaned~100! Si wafer possessing
;20 Å thick silicon oxide layer at a temperature
;1.5 °C above the liquid crystal melting point. At ear
times this liquid crystal droplet possesses a rounded sh
as in capillary dominated spreading, but with a sharp bor
where the liquid crystal height decreases suddenly o
;250 Å to the the wafer value. With increasing time t
droplet evolves into two terraces where the lower terr
possesses a thickness of;40 Å while the upper terrace
possesses a thickness of;200 Å @Fig. 2~a!#. Both terraces
are extremely flat on top and the step edge between the
terraces is sharper than our horizontal spatial resolution
;10 mm. This system constitutes the simplest system w
which to test the predictions of the de Gennes and Caz
model @7# for terraced spreading. Surprisingly we have d
covered that a hole develops in the upper terrace soon

FIG. 6. Plot of the ‘‘diffusion coefficient’’ D
5R1 ln(R1 /R2)dR1 /dt versus normalized timeT for the three
droplets: 9.1 pl~circles!, 24.4 pl ~squares!, and 60.5 pl~triangles!.
r
-

nt

e
rs

re

in

of

e,
er
er

e

o
of
h
at
-
ter

this terrace acquires a flat top. This hole propagates dow
the depth of the first terrace. We have extended the
Gennes and Cazabat model to include a hole in the up
terrace. The resulting dimensionless analytic expressions
the spreading dynamics of two-terraced droplets, posses
a hole in the upper terrace, are given in Eqs.~26!–~29!; these
expressions are expected to remain valid provided that
inequality in Eq.~30! holds, namely, for small permeatio
lengths compared with the outer radius of the upper terr
(R2) and provided that the spreading is not too near
spreading lifetime whenR2'R3. According to Eq.~27! a
hole must form in the second terrace for spreading drop
which obey the rules set out by de Gennes and Cazaba@7#
because the growth velocity of the holedr3 /dt
;1/r 3 ln(r 2 /r 3) is positive and diverges for smallr 3 ~the
dimensionless radius of the hole!, namely, any small pertur
bations are unstable and must grow. We have found that
dimensionless equations provide a good description of
average spreading dynamics whereb/a55.5 @Fig. 3~b!# for a
permeation length ofj;3 mm. From the value of
R1 ln(R1 /R2)dR1 /dt we determined the average diffusio
coefficient for the first terrace (W22W1)/z1'1.6
31026 cm2/s. This quantity is expected to depend main
upon the interaction of the liquid crystal with the Si waf
surface.

One may conclude that the theory appears to provid
good description of the average evolution of two-terrac
droplets possessing flat terraces and sharp boundaries
tween the first and the second terrace. It provides an ex
nation of why the hole must develop in the second terra
However, the theory omits important features which are
served experimental, such as, the irregularities of the sec
terrace at late times. It would be very useful if the perm
ation length (;3 mm) could be determined directly via ex
periment. This can perhaps now be accomplished using
atomic force microscope@26#.
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APPENDIX

In Sec. V we derived an approximate analytic express
for m2 @Eq. ~20!# in the region R3,r ,R22L where L
'5j. This equation is expected to be valid for smallj/R2
according to condition~30!. In order to check this approxi
mation we solve numerically the corresponding coupled d
ferential equations in this appendix, without making the
sumption that j/R2!1. Equations ~1!–~5! can be
reformulated as

¹2m25Cz~1/a11/b!@2m22~m11m2!# ~A1!

and

¹2~m11m2!5~Cz1 /a!@~m11m2!22m2#. ~A2!

The boundary conditions for these equations atR3 are m2
5W2 and d/dr(m11m2)50 where the second conditio
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comes from Eqs.~4! and ~5! with V150 at R3. At R2 the
boundary conditions arem25W2 and (m11m2)2W12m2
52R2 ln(R1 /R2)d(m11m2)/dr. The later boundary condi
tion represents the velocity continuity in the first terrace, a
comes from Eqs.~4!, ~5!, and ~14! with D5m22m1 at R2.
These coupled equations are solved numerically usin
Runge-Kutta scheme, and the boundary conditions are
justed by the shooting method@25#.

In Fig. 4 we compare a numerical solution~solid lines! to
Eqs. ~A1! and ~A2! for R152, R251, R350.4, andj/Rf
.

n,

, F

.

. I

ys
.

d

-

P

F

d

a
d-

50.008 with the asymptotic logarithmic approximation f
m2 ~open circles! given in Eq. ~20! which is valid in the
region R3,r ,R225j. We also compare the approxima
exponential expressions form1 and m2 ~dotted lines! in the
regionR225j,r ,R2 derived from Eqs.~4!, ~5!, ~11!, and
~12!. We observe good agreement between the approxi
tions and the exact numerical solution. The potential diff
encem22m1 at r 5R2 in this figure is much larger than th
corresponding difference atr 5R3; this is indicative that the
permeation atR2 is much greater than the permeation atR3.
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