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The liquid crystaI_BS spreads as a two-terraced droplet on an oxide cov&@@l Si wafer. The thickness
of the upper and lower terraces are respectiveB00 and~40 A . This is the simplest system for which the
de Gennes and Cazal@GC) terraced spreading modgT. R. Acad. Sci. 11310, 1601(1990] is applicable.
We find that soon after the upper terrace acquires a flat top a hole develops in the center of this terrace. The
hole propagates down to the depth of the first terrace. In this contribution we demonstrate that the dGC model
is unstable to the formation of a hole in the center of the upper terrace for a two-terraced droplet. Our extended
dGC model, which includes a hole in the upper terrace, provides a reasonable descriptioravértmge
spreading dynamics for this system. However, this model has difficulties quantitatively accounting for all of
the features exhibited by the dynamics, perhaps because experimentally the inner and outer borders of the
upper terrace become irregular with time. These irregularities in the borders have not been included within the
model.[S1063-651X99)04006-4

PACS numbdss): 68.10.Gw, 68.15t¢e, 61.30--v, 68.45-v

I. INTRODUCTION motion is somewhat complicated because the motion of one
terrace is coupled to the motion of other terraces. Cazabat
The spreading of liquid droplets is very important for an and co-workerg5] have observed terraced droplets in many
understanding of lubrication, molecular scale friction, anddifferent types of systems, however, the terraces that she and
coating dynamic$1,2]. One of the most interesting features co-workers have observed frequently have rounded edges
observed in the spreading of nonvolatile liquid droplets on(with rounding~0.1—0.5 mm[10]) or alternatively possess
completely wettable surfaces is the formation of molecularsloping terracefl1] or a rounded droplet on top of the upper
size terraces which precede the spreading of the macroscoptierrace. These terraced droplets therefore do not conform
droplet across the surface. These first few molecular layergrecisely to the situation studied theoretically by dGC where
are frequently called precursor layers. The existence of prethey assume flat terraces with sharp edges between terraces
cursor films has been known since early in the cenf@ly (Fig. 1). A more ideal terraced droplet was observed by Dai-
but only recently have sufficiently sensitive experimentalllant, Zalczer, and Benattdd 2] for the liquid crystal 8CB
technigues been used to quantify their existence. The precuspreading on &00 silicon wafer where three terraces with
sor film can take a number of different forms. It can eitherflat tops and sharp edges were observed. Curiously near the
vary continuously from a molecular size at the precursor film
tip to a mesoscopic or macroscopic size at the droplet center
[4] or it can consist of one or more terraced layers at the edge
of the mesoscopic or macroscopic drofdlgt. When terrac-
ing is present the droplet may acquire the shape of a very flat Potential flow Permeation annulus
pyramid. Cazabat and co-workdr8] provide a fascinating
catalog of the many diverse forms that a spreading
. . . g . L~5E -
pyramid-shaped” droplet can take under differing condi- . Second terrace _
tions. The reasons for the differing shapes of the precursore“'b ; :
film are not completely understood at this time, however, it
is believed to depend upon many different factors such asthe a v,
atomic scale friction, the long and short-range interactions
between the fluid molecules and the substrate, smectic layer-
ing induced by the presence of a hard boundary, and the
presence of any adsorbed water molecules. These experime(ﬂé

tf’il studies have stimulate_d numerous theoretical_in\_/eStigaréspectively, possess a thicknessa@ndb. The second terrace has
tions[7,8] and computer simulatior{®], however, this field an inner bordefor hole at R; and outer border &,, while the first

is far from understood either theoretically or experimentally.iarrace has a border &, The chemical potential at each of these

In Ref.[7] de Gennes and CazalidGC) have developed  free horders is;=W; . Permeation from the second terrace to the
a conceptually simple model of terraced spreading whefyst terrace is much greater nes than neaiR,. The permeation
many terraces can be present. They assume that terracifgarr, causes a drop in chemical potential rat R,—L of u.,
exists and then determine the motion caused by the perme-w,—A,, which drives the flow in the second terrace and in-
ation of molecules from an upper terrace to a lower terracereases the size of the holeRy. Our model is restricted to the case
assuming that the fluid at each terrace is incompressible. Thehere the permeation lengfixR; and é<R,—R3.
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FIG. 1. Sketch of a two-terraced droplet as a function of radial
tancer from the center of the drop. The first and second terraces,
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later part of the spreading dynamics, when only two terracesystem can be supercooled to well below its melting point. A
remained, holes were observed to form in the upper terrac&ematic-smectic transition is observed at 37.0 °C while the
Daillant, Zalczer, and Benattar did not study the hole dynamsystem recrystallizes at 23 °C.
ics in detail nor did they provide an explanation for the |y gqur experiments a small crystal 063 is deposited on
growth of holes. ) ~aclean Si wafer at room temperature using a glass microma-

The ideal system to apply the dGC model to is one whichyjpylator and an optical microscope. The volumef these
consists of terraces possessing both perfectly flat tops andcystals varied between 10 and 60 pl. The Si wafer and liquid
sharp edge between terraces. In this paper we descrigystal were then placed inside a closed oven which was
the spreading dynamics of such a system. The spreadingpidly heated to 55 °C. At this temperature the liquid crystal
dynamics of the liquid crystal 4-pentylphenyl-4-  mejtsand spreads on the Si wafer surface as two well defined
n-heptyloxythiobenzoate &5) on an oxide coveredl00)  terraces. The spreading dynamics are studied inside this
silicon wafer, at the later stages, consists of only two terracesven, where the temperature variations are below 0.002°C,
which possess flat tops and sharp edges between terracasd the silicon wafer is situated on a solid copper block in
(that is edges which are sharper than our spatial resolution afrder to minimize thermal gradients. Images of the drop are
~10 um). As in Ref.[12] we find that this two terraced obtained with an ellipsometric microscop&7,18 whose
droplet spreads via the formation of a hole, that in our caseangle of incidence is fixed at the Brewster angle for the oxide
is at the center of the second terrace. covered Si wafer §g=75.5°). Imaging optics provide a spa-

In this paper we are primary interested in the final stagesial resolution of better than 1Qumx 40 wm while the ver-
of terraced spreading when only two terraces exist with dical film thickness resolutiorsil A . Theacquisition of each
hole at the center of the upper terrace. The scope of thignage into a personal computer takes only a few seconds.
paper is not to explain the terraced structure or the nucleatiofhis time is short compared with the spreading time of typi-
of the hole, rather our purpose is to use a simple heuristically a couple of hours. The ellipsometric signal obtained by
model, specifically the dGC model, to describe the averagene microscope In(,/rs), wherer , andr are, respectively,
spreading dynamics without taking into account the detailedhe effective complex reflection amplitudes for theand s
internal structure of the liquid crystal. In this model terracespolarizations, is converted to thicknebsas a function of
of constant thickness are assumed to be present. We extepdsition on the Si wafer substraf@9] by modeling each
this model to include a hole at the center of a two-terracegoint on the droplet as a homogeneous isotropic dielectric
droplet; surprisingly, despite the simplicity of this model alayer possessing an average refractive inder=efL.5[20].
reasonable qualitative description of the spreading dynamics

for the |IqUId CryStaI_'BS is obtained. IIl. EXPERIMENTAL RESULTS

The spreading of the droplets progresses through a num-
Il. EXPERIMENTS ber of differing stages.

- (1) In the first stage the droplet height proftér), as a
The (100 silicon wafer substrates that we use were PUt inction of the radial distancefrom the center of the drop-

ch?Sﬁddfrom Semj(cjondugtor Processin% Cohmpanyd They ai&, possesses a rounded shape similar to capillarity domi-
polished on one side and possestype phosphorus doping, nated spreading of any ordinary liquid. An extraordinary fea-

a resistivity of 1-10 Qc_m an_d dimensions of 3283.'8 ture of the droplet, at this stage, is the shape of the droplet
XQ'32 cnd. The §urface is typically covg_red by a uniform border with the wafer; at the droplet border the thickness
oxide Iayer. of thlcknes$v20 A. The silicon wafers go decreases “precipitously” to the wafer value over a height
through a rigorous cleaning procedure before use. They als _o50 A in less than our spatial resolution of J0m.

first cleaned with an “organic mixture” consisting of a so- (2) Next a precursor film of thickness~40 A appears
lution of l_i20+ H20,+ NH,OH in the rat‘[o 6:1.5:1 for 1?, at the border of the drop while the central part of the drop
min at .75 C followed by C'eaf"”g na metallic mixiure still remains roundedFig. 2(a), curve A]. Throughout the
consisting ,?f HO+H,0,+HCln the ratio 7.5:1.5:1 for 15 spreading process the thickness of this precursor film is con-
min at 75°C. These two cleaning procedures remove, regiant yithin our experimental resolution of 1 [R1]. The

spectively, most trace organic and metallic impurities froMe \when the precursor film first appears will be denoted b
the surfacg13]. The wafer is finally rinsed in distilled deion- P bp y

ized water and then vapor degreased in isoprop_yl .aICOhOP. (3) With increasing time the central part of the drop be-
[14]. Isopropyl alcohol and water are completely miscible so omes progressively flatter and its maximum heightap-

. ; C
that any residual water on the wafer surface is removed angroaches an asymptotic valuelgi=a-+ b in an approximate
the substrate can be readily dried in an oven at 110°C W'théxponential fashioffiFig. (@], whereb is the thickness of

OUIf any observable V\I/ater sta|Ps. Jusht prlc;r to usag(tehthqhe second terrace. When the height reaches this asymptotic
waters are uv ozone cleangth] for one hour to ensure the value, the central portion of the upper terrace is flat. It is at

absence O.f organic contaminants. After thls_pr(_)ceQUre, COMpis stage that a hole first appears at the center of the second
plete wetting Wlth water is a(_:hleved as an indication of theterrace[Fig. 2a), curve B]. This hole rapidly propagates
excellent quality ofihe cleaning procedure. down to the depth of the first terrafféig. 2(a), curveC]. The

The liquid crystal B5, used in the experiments, possessesole s initially quite circular however with increasing time
an interesting phase diagrdr6]. On heating B5 melts at  the inner and outer edges of the second terrace are progres-
53.5°C and exhibits an isotropic-nematic phase transition atively “eaten” away and the borders may become irregular
82.1°C on both heating and cooling. For bulk samples thigFig. 2(b)]. Note that the thickness of the first and second
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FIG. 3. (a) Relative height k,/h¢) of the second terrace as a
. function of the normalized time T), where hi=a+b is the

FIG. 2. (a) Height profile h(r) for the liquid crystal B5 of asymptotic height. The extended dGC model is expected to be most
volume 60.5 pl spreading on(@00 Si wafer surface at different accurate foh, constant, namely, fof >0.2. (b) Experimental time
normalized timesT = (t—ty)/(t;—ty), T=0.01(A), 0.10(B), and  evolution (symbolg of the average, normalized radius of the pre-
0.77(C) wheret, andt; represent, respectively, the time when the cursor ¢,), second terracerg), and hole ;) for droplet volumes
precursor layer first appears and the time when spreading stops. bf 9.15, 24.4, and 60.5 pl, where;=R;/R; and R; is the
B the hole of radius; is just starting to form. For curv€ the hole  asymptotic radius of the first terrace. The solid line represents a fit
has propagated to the depth of the first terrace, and the secorid the extended dGC modggs.(26)—(29)] with £/R;=0.0025 for
terrace is extremely flat on top with a sharp outer border of radiudixed b/a=5.5.
R,. (b) Two-dimensional image of the spreading droplet of cutye
where the profile ina) is a vertical cut through the center of drop-

let. The gray bar corresponds to a length scale of 1 mm. the holer;, for three different volumes as a function of

Here the radii have been divided by the final radiks

terraces,a and b, respectively, remairconstantthroughout = V/m7a of the monolayer. For all of the data sets repre-
this later stage when a hole is present. senting three different droplet sizes the relative height;

(4) Finally, the spreading stops when the second terracfFig. 3(a)] and the reduced radii; [Fig. 3(b)] fall on an
disappears at timg . The surface is then covered by a cir- approximate universal curve when plotted as a function of
cular static layer of thicknesa the normalized timeT. This universality holds despite the

It is convenient to measure events in terms of the normalfact that the thicknessea and b vary considerably(in a
ized timeT=(t—1ty)/t; wheret is time andt;=t;—ty is the  nonsystematic wayas the droplet volume is increased from
“lifetime” of the droplet measured from when the precursor 10 to 60 pl. The cause for this variation @&nandb could be
film first appears at timeé, until the time when the second due to slight differences in the amount of water vapor ad-
terrace disappears gt. In terms of this normalized time the sorbed on the Si wafer for different experiments; the pres-
first terrace appears d=0, the hole in the second terrace ence of water vapor is known to influence the spreading ki-
appears approximately when the height of the second terrageetics in other experimen{22].
becomes time independent &=0.2 [Fig. 3(a)], while the In analyzing the ellipsometric images of the droplet we
spreading process finishest1. have assumed that the density and refractive index of the

In Fig. 3(@ we have plotted the maximum height of the drop are constant and equal to their bulk values. The volume
droplet h, divided by its asymptotic valué;=a+b as a of the droplets can be measured to an accuracy of approxi-
function of the normalized tim& defined above. In Fig.(B) mately 1%. From data for the larger droplets we estimate
we show the time evolution of the average reduced mgdii that there was a systematic decrease in volume of the order
=R, /R; for the first terrace 1, the second terraas, and for  of 0.5% per hour, which is probably due to slow evaporation.
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The total spreading time was 1 to 4 hours so that the effectehere V; is the horizontal velocity along terrace and

due to evaporation are small. divV=1/ra(rV)/or represents the divergence operator for
We have checked that the hole in the second terrace stitadial symmetry. In the sections of the drop where only the

forms (i) at 60 °C andii) in an environment of higher liquid first terrace exists, namely, for>R,, we have simply

crystal vapor pressure at 55°C. The dynamics in both oflivw;=0.

these situations was similar to the results reported in this (c) The velocities and the chemical potentials are related

publication. This suggests that the appearance of the hole tsy the simple linear relationships

not related to the proximity to the melting point or to the

presence of slow evaporation. —Vu1=0Vi+ (V1= Vy), (4)

—Vuo=40(Vo=Vy), ®)

where{, and{ are the friction coefficients between the first
éerrace and the substrate and between the two terraces, re-
pectively. If the flow in the second terrace can be described

IV. MODEL OF de GENNES AND CAZABAT

The dGC model7] for terraced droplets describes the
evolution of drops structured in terraces of equal thicknes
assuming that the molecules evolve as a two dimension . . : 2
incompressible fluid in each terrace where the fluid perme?Y the equations for a viscous fluid thée: 7v/b®, wherez
ates from the upper terrace to the lower terrace only in a thits the Macroscopic viscosity of the fluid. In g_enera_l, t_he value
annulus at the borders of each terrace. This model does n§f $1 Will depend upon the details of the fluid-solid interac-

- fion.
explain why the droplets are terraced, but allows the compu- .
tation of the time evolution of the radius of each terrace. ' We take the difference between Edg) and (5) and

Here we adapt this model for droplets possessing two terapplybth_e dri]veglgf?nce t_o lbOIh s@des then using Efjs-(3),
races of differing thickness. Most of these formulas are deWe obtain the ditferential equation
rived in Ref.[7], but we shall include them here for clarity.

In the following section we extend the dGC model by incor- V(- )= 2 H2 6)
porating a hole at the center of the second terrace. For those &2

readers whose main interest is in a comparison between the ) )

extended dGC model and experiment the remainder of thi¢here the permeation length is

paper has been written so that the theory in Secs. IV-VI can £=[CQ2¢(1a+ 1)+ ¢y 1a)] V2 @

be omitted without a significant loss in understanding of Sec.
VII where this comparison is made.

In the dGC model we assume that the first terrace has
thicknessa and the second terrace has a thickrie§Big. 1).
The three main assumptions of this model are as follows.

(@ In the zones where there are two terraces, the quitg
descends by permeation from the second terrace to the first

This is the characteristic length scale over which permeation
Bccurs between the terraces.

Following dGC, we restrict ourselves to cases where the
ermeation is concentrated in a narrow region of the order of
near the border aR,, with

with a flux (volume/area/timegiven by E<R,. (8)
J,(r)=C[ 1(r)— uo(r)]. (1)  Thus, in this regiorv2~d?/dr?, and from Eq.(6),
The flow is downward when the flux, is negativeC>0 is po— pr=Aexd (r—Ry)/£], €)

the permeation constarf3], wq(r) and w,(r) are the
chemical potentials in the first and second terraces, respe
tively, given byu(r)=uo+tovp(r) +W;. ugis a(irrelevany
reference chemical potentigh(r) is the relative pressure
with respect to the atmospheric pressuras the molecular
volume, andW, represent the interaction of a molecule in

vhere A is a constant that determines the difference in
chemical potentials between the second and the first terrace
at r=R,. An expression forA will be determined later in
this calculation. We hava ;= u, if r<R,—L; hereL is the
size of the permeation annulgBig. 1) and

terracel with the solid substratéV, = — Sy3, whereS; is the ¢<L<R, (10)
monolayer spreading coefficient aidis the area per mol- '
ecule while, for nonretarded dispersion interactions,~ where, for examplel. ~5¢.

—Av/(a+b)* whereAis the Hamaker constant. For spread-  The horizontal velocities within the permeation region for
ing across the substrate we require that BdthandW, are  each terrace can now be determined by integrating &2)s.
negative with\W;|>|W,|. At the terrace borders, the relative and (3) and computing the flux from Eqg$1) and(9),
pressure is zero and thus, the potentialsgare W, .

(b) The molecules move along each terrace according to C
the equation for incompressible flow. Therefore, the mass Vl:EfA exf(r=Rp)/¢], (12)
conservation equation for two-dimensional flow in each ter-
race is given by C
Vo=~ péAexd(r—Ry)/<l, (12)

adivV,=-1J,, 2
wherer is restricted to the regioR,—L<r<R,. We have
bdivV,=J,, (3 assumed that the velocities R — L are negligible.
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Within the regionR,<r<R; only one layer is present, 1.000 ——7—— T T T
consequently there is no permeation anddiz 0 [Eq. (2)],
—Vui=4,V, [EQ. (4)], and thereforeV2u,=0. Thus, in
this region, 1.000
In(Ry/r)

M1=(W2—W1—A)m

+W,, (13 0.999

o

where this equation satisfies the boundary conditions%_ 0.998
n1(Ry) =W, andu;(R,)=W,—A [see Eq(9)]. The corre- =
sponding velocity field is
0.997
V=~ Vgl =2 Wi 4 14
CoVe T RR 4
0.996
Now we can determine a value far by matching the ve-

locities atr =R, using Eqgs.(11) and(14). We obtain

0.995
0.
Wo— W,

A= iR N(RR)Ia+ 1

~O(é/Ry), (19 r

FIG. 4. Comparison of the chemical potentigls, and u,, as-
where the order of the approximation fdr was estimated sumed in Secs. IV and V in the regid®<r <R, with an exact
using Eq.(7). It is interesting to note thak is positive and  numerical solution determined in the Appendix. In Sec. V we as-
therefore according to Eq$l) and (9) the vertical flux is  sume thatu;~ u, for Rz<r<R,—L, whereL~5¢; the logarith-
negative corresponding to a downward flow as one wouldnic approximation foru,(r) [Eg. (20)] in this region is shown as

expect for spreading droplets. open circles. The exact numerical solutions of Eg&l) and (A2)
Finally, the velocity at the border of the first terrace is for u; andu, are shown as solid lines. R,=1 andR;=0.4 the
equal to the growth of the radiug,, therefore, chemical potential differencg,— w4 is described, respectively, by
the termsA andA 5. The large difference betweenandA; shown
dR; W,—W;—A in this figure indicates that the permeationRyt is much greater

(16)  than the permeation &; [Eq. (19)]. We also show the approximate
exponential solutions foj; and u, (dotted lineg in the region
R,—L<r<R, determined from Eqg4), (5), (11), and(12).

Riit = 2R, /R,

from Eq. (14). The evolution of the second terrace may be
obtained from Eq.(16) together with the conservation of
volume V= r7aRé+ mbR3=const. More details about this
model can be found in Ref7].

A,={CA&(1/a+1b)~O(£/Ry). (18

Here we have assumed that the velocities aR,—L are
very small compared with the velocities in the vicinityRj§.
V. GROWTH OF THE HOLE In determining the order of the approximation far, we

Now we shall demonstrate that the above solution is unh@ve used Eqs7) and (15). Permeation also occurs B
stable with respect to the appearance of a hole at the centBHt: @S we will show later, it is much smaller than the per-
of the second terrace. Let us assume that a small hole gfeation aR,. In fact,
radiusRj is initially created(by some agent not included in
this mode) at the center of the dropléFig. 1), where the J2(R3) ~(£/R3)Jo(Ry). (19
thickness inside the hole & and the velocityV/; must be

zero since the first layer has constant thickness. At the border The flow mz the regionRy<r<R,—L is approximately
R; of this hole, the chemical potential will e,=W,. How- governed bV *u,~0 sinceu,~ u, in this region(because

. o . the permeation is negligible This condition foru, can be
ever, as we will demonstrate, the permeation in the neigh- 2 ;
borhood ofR, creates a local drop in the chemical potentialdecjuce‘j from Eqs(1)—(3) and(5). Therefore, the chemical

(Fig. 4 and as a consequence of this gradient in chemica‘i’ou:"m""\‘I must have the form
potential, fluid flow will occur in the second terrace between In(r/
R; andR, o= N(r/Rs)
’ . . 2T TR IR T VR

In order to compute the drop in the potential due to the PIn[(Rz—L)/Rs]
permeation neaR,, we integrate Eq(5) using the expres- ) o
sions for the velocities given in Eqél1) and(12). We find ~ Which satisfies Eq(17) and uo(R3)~W,.
that at a small distance from the border of the second Within the second terrace at a distance much greater than

+W,, (20

terrace ¢ from the bordersy,;=~ u, and, therefore, from Eq$4) and
5),
R,—L)= R,)—A,, 1
ma(Ro—L)=pua(Ry) —Ap (17) Y
where Va(r)= 27 Vq(r). (21)
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The corresponding velocity field in this region is given by the velocity V, at R, calculated from Eq.12) is much
greater than the velocity field determined from E2R) also

_2thhy 1 (22  evaluated aR,. This condition may be written as
200 L rIn(Ry/Ry)’
- &1
h h E 2 21 t tain th < — ————
\r/;si:te we have used Eqb), (20), and (21) to obtain this EIR,< 2+, b/a+1ln(R2/R3)' (30
All the mass that comes from the hole is transported by ) o )
the flow in the two terraces, therefore In this pubI|<_:at|0n we assume small perm_eathn Ienghs
compared withR; and therefore the approximatid30) is
dRs valid provided that we are not too close to the completion
2mb R3W=27TaR3V1(R3)+27Tb ReVa(Rs), (23 time for spreading wherB,~R;. If Eq. (30) is well satisfied

then our analytic expressions faf are very accurate. In Fig.
and using Eqgs(21) and (22) we obtain a differential equa- 4 we compare Eq(20) for u, in the regionR;<r<R,—L

tion that describes the growth of the hole (open circleg with an exact numerical solution of the equa-
tions for u, andu, (solid lineg given in the Appendix for a
ﬁ% E+ {1t2 24, (24) specific set of values fdR;, R,, andR;. In the same figure
3 dt b 2¢ ) ¢iIn(Ry/Ry)’ we also show our solutions fqi, and u, (dotted line$ in

o ] the regionR,—L<r=<R, determined from Eqs(4), (5),
whereA, is given in Eq.(18). . (11), and(12). The analytic expressions agree with the exact
~ In order to obtain the time evolution of a drop, we must hymerical solutions extremely well in the bulk of the drop,
integrate this equation together with the conservation ofyhere the logarithmic approximation holds Eg0), and in
mass the vicinity of R,; these are the two regimes which primarly

_ 2 2 2y _ determine the flow behavior of the drop.

V=maR;+ mb(R;~Rs) =const (25 In Sec. V we also assumed thaj is approximately equal
and the equation for the outer terrace, Etf). Corrections (0 W2 in the vicinity of R; [Eq. (20)]. This is a reasonable
to Eq. (16) due to the permeation & are only of order assumption because the potentlal difference at a small dis-
£2/R,R, and can therefore be neglected. tance ¢ from the' border R; is of the qrder of'A,@

These evolution equations which describe the spreading V2(Rs)¢¢ according to Eqs(?) and (21); this quantity is
dynamics of a two-terraced droplet, E¢s6), (24), and(25), ~ Of order A &/RsIn(R,/Rs)~O(£7/R;R;) using Eq.(22), and
can conveniently be written in terms of a dimensionless rathus, negligible with respect ta,. This means that in the
diusr;=R./R; and a dimensionless time=t/t. where the ~N€ighborhood oR; there is permeation, but it does not sig-

characteristic time i, = sz {11 (Wy—Wy): nificantly affect_the che_mical potential. _
We are now in a position to compare the permeatidRzat

drq 1 to the permeation aR,. The permeation flux neaR; is
s T in(ryiry 1= W,—W, )’ (26)  given by
Ra+ &
(Ars_2(@brf/2f+l) (1+alb)(de) A Q3=f T3 n2ardr~27R,CAzE,  (31)
Sdr In(r,/ry) (2L14)(1+alb)+1 W,— W, Rs
(27)
) . i . where we have used the equation for the vertical flux at
the dimensionless potential drop is given by positionr
A = ! J =C =CA R / 32
oW, RIBTI LT 20T AT T A1) =Clua(r) = po(r)]=CAz exd (Ry=1)/£], (32
28
28 and A5 represents the chemical potential difference between
and the dimensionless conservation of mass is now the first and second terrace R§. [Equation(32) is analo-
s o gous to Egs(1) and(9) applied atR;.] This permeation flux
ri+(ry—r3b/a=1. (290 creates a velocity field/, in the first terrace,
Equations(26)—(29) can readily be solved numerically by 2 7R,CA3¢=2RsaVy(Rs). 33)

standard methods, for instance, using a Runge-Kutta scheme
[25]. At 7=0, the initial condition isr,=r,=+al/(a+b)

from Eq. (29) with r5=0. Therefore, the difference between the potentials in the two

terraces isA;=V4(R3)a/Cé, and, by using Eqs(18), (21),

and(22), we find that
VI. RANGE OF VALIDITY FOR THE EXTENDED dGC

MODEL As~A&IR;IN(Ry/Ry). (34)

According to our approximations thus far Ed41) and
(12) will continue to describe the velocity flow in the imme- This equation corresponds precisely to the statement given in
diate vicinity of R, provided that the absolute magnitude of Eq. (19) [using Egs(1), (9), and(32)].
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VII. ANALYSIS AND COMPARISON WITH EXPERIMENT

In Secs. IV and V we have derived equatig(ik6), (24),
and(25)] which completely describe the dynamics of a two-
terraced droplet possessing a hole at the center of the seconc
terrace(Fig. 1). Dimensionless forms for these equations are
also given in Eqs(26)—(29). These equations are valid pro-
vided that the inequality given in Ed30) holds. This in-
equality corresponds approximately to the condition that the
permeation lengtit<R,— R;, so the equations become in-
valid near the spreading completion time whBg~R;. T
From Egs.(26)—(29) the evolution dynamics are completely
determined by the dimensionless ratid®;, {,/{, andb/a.

As noted by dGC, the evolution of the dimensionless radius
r, [Eq. (26)] is relatively insensitive to the permeation dy-
namics because the dimensionless potential dkdpW,
—-W,), Eq.(28), is proportional to¢/R; which is assumed to
be much smaller than one. However, the growth of the hole
[Eqg. (27)], represented by the dimensionless radiys is
directly proportional to A/(W,—W,) and therefore ex-
tremely sensitive to the permeation dynamics.

In order to be able to compute the solution of these evo- FIG. 5. Theoretical evolution curves determined from Egs.
lution equations, we will assume that each terrace acts as(@6)—(29) for b/a=5.5 (the experimental averageand &/R;
viscous fluid, so that,/¢=(b/a)?. This assumption is ex- =0.001 (dotted line$ and 0.01(dashed lines We also show the
pected to be a valid approximation for the second terf@age influence of varying the quantitp/a; the solid lines are fob/a
namely, Z= nuv/b?, while for the first terrace Fraysss al.  =3.0 andé/R;=0.001.

[10] have essentially demonstrated thét,(—W,)/; is pro- ) )

portional to 14, where is the bulk viscosity and therefore for &/R¢=0.0025. From this value fof/R; we determine the
from dimensional considerations we expect thigt nv/a2.  Permeation lengtit for each droplet. The average perme-
Helfrich [23] has used a similar relationship for the friction ation length of approximately 3um is consistent with the
coefficient to describe the unusual flow behavior of smectic@xPerimental observation that the step edge between the first
liquid crystals in small capillaries. and second terraces B is sharper than our experimental

In order to examine the sensitivity of the curves toresolution of~10 um. If the permeation lengtti happened
changes in the permeation length we have plotteds a 0 exceed our.experlmental resolution we would expect to
function of the normalized timd@ = /7, (Fig. 5 where 7, observe rounding at the border between the two terraces.
~0.44 is the dimensionless time when the second terracéable | exhibits a considerable variation between the perme-
disappears. In this calculation we have ls&i=>5.5 (the av- a}tion lengths for different droplets. '!'h(_a thicknes®f the
erage experimental valu@nd variedé/R;; the dotted and fIrS_t terrace alsq shows a Iarge variation between droplets
dashed lines correspond, respectively,&®.=0.001 and whph could be |nd|ca.t|ve of d|ﬁ§rlng molecular prop_ertles
0.01. As expected, is not very sensitive to this parameter Within the terrace, which according to R¢24] could give
while r5 depends sensitively upaiR; . The cusp im, and ~ "1S€ to different values fo. ,
rs nearT=1 is caused by the failure of E¢30) when our Following Ref. [10], from Eq. (26) with A/(W,—W;)
analytic approximations are no longer valid. In this figure we<<1, We determine that the quantiB; In(R, /Rz)dR, /dt is
have also plotted the curves fofa=3.0 andé/R;=0.001 approximately |nd§pendent of tl_m_e; this quantity provides a
(solid lines where in this calculation the dimensionless life- value for the ‘i%ﬁfusmn coefficient” D =(W,—Wy)/{;
time 7,=0.34. One observes from the two curves where=(1.620.3)x10"°® cn/s for the three dropletig. 6 and
¢/R;=0.001(solid and dotted lingshat the magnitude af; Table ). The dimensionless terrace In;etlme calculated from
and the behavior in the region wherg~r, (near the 7I(€XPH)=t//tc=(t;—to)(W,—Wy)/{1Rf=0.5+0.1, and
completion time afT=1) are relatively insensitive to the 9given in Table | for the three drops, agrees within experi-
value ofb/a. mental errors with the numerically determined dimensionless

We now compare the extended dGC theory with experilifetime of 7,=0.44 forb/a=5.5. . .
ments. In Fig. &) we have plotted the averaged normalized The agreement between theory and experiment is only
radiusr;=R;/R; as a function of the normalized timé
= (t—tp)/t, for three different droplets with volumes varying
from 9 to 60 pl(symbols. As defined above,; =t;—t, is the
spreading lifetime when the second terrace disappears a
the spreading stops. Our model is strictly valid only wizen
and b are time independent, which according to Figa)3 9.15 34.3 5.44 3980 2.31.26x107° 0.59
occurs whenT>0.2. We have fixecb/a=5.5, the experi- 24.4 452 7.86 3740 3.3 1.70x10°° 0.37
mental average value, and allowétR; to vary in orderto 05 406 3.19 15400 54 1.79x10°© 0.58
find the best fit to the experimen(solid lineg, which occurs

TABLE |. Experimental droplet parameters.

n ti=ti—ty &
\P(pl) a(A) bla (s (um) D (cm 2/s) 7, (expt)
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3.0 this terrace acquires a flat top. This hole propagates down to
the depth of the first terrace. We have extended the de
Gennes and Cazabat model to include a hole in the upper

257 terrace. The resulting dimensionless analytic expressions for
n the spreading dynamics of two-terraced droplets, possessing
2.0 Sa, a hole in the upper terrace, are given in E@§)—(29); these
0 - LN expressions are expected to remain valid provided that the
o [N A.A am ne . . . .
e Ad - L0 mg inequality in Eq.(30) holds, namely, for small permeation
O 157 o O o OA A A A lengths compared with the outer radius of the upper terrace
[ 0000 000 © o (R,) and provided that the spreading is not too near the
g 10 4 spreading lifetime wherR,~R3. According to Eq.(27) a

hole must form in the second terrace for spreading droplets
‘ which obey the rules set out by de Gennes and CaZalat
0.5 1 because the growth velocity of the hol@rs/dr
~1Ir3In(r,/rg) is positive and diverges for smailk (the
dimensionless radius of the hplemamely, any small pertur-
bations are unstable and must grow. We have found that the
dimensionless equations provide a good description of the
T average spreading dynamics whbefa=5.5[Fig. 3(b)] for a
FIG. 6. Plot of the “diffusion coefficient” D  Permeation length ofé~3 um. From the value of
=R, In(R;/R,)dR, /dt versus normalized timd for the three ~RiIN(R1/Rp)dR;/dt we determined the average diffusion
droplets: 9.1 pcircles, 24.4 pl(squares and 60.5 pitriangleg. ~ Coefficient for the first terrace W,—W;)/{;~1.6
X107 cm?/s. This quantity is expected to depend mainly
qualitative[Fig. (3)]; approximate agreement is obtained for upon the interaction of the liquid crystal with the Si wafer
the shape of the reduced radii curvesas a function of the surface.
normalized timeT. The experimental data exhibits a greater One may conclude that the theory appears to provide a
universality in form which is much less sensitive to the val-good description of the average evolution of two-terraced
ues ofb/a and &/R; than theory would indicate. We do not droplets possessing flat terraces and sharp boundaries be-
believe that the discrepancies between theory and experimetween the first and the second terrace. It provides an expla-
are caused by our assumption tifat /= (b/a)?>. We have nation of why the hole must develop in the second terrace.
also considered other limiting cases, such{as;>1 and However, the theory omits important features which are ob-
£,1{<1; the parametef; /¢ cannot improve the agreement Served experimental, such as, the irregularities of the second
between theory and experiment. We believe that part of théerrace at late times. It would be very useful if the perme-
problem may be due to the irregular inner and outer bordergtion length (-3 xm) could be determined directly via ex-
of the second terrackFig. 2(b)]; R, and R; only represent periment. This can perhaps now be accomplished using an
the average radii for these borders. These irregularities ar@omic force microscopg26].
not included within the theory; they indicate that the velocity

0.0 T T T
0.2 0.4 0.6 0.8 1.0

flows at the borders of the second terrace, at any instance in ACKNOWLEDGMENTS
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In this paper we have studied the spreeﬁing dynamics of APPENDIX

microdroplets (9-60 pl) of the liquid crystal 5 on a mo-
lecularly flat, uv-ozone cleangd 00 Si wafer possessing a
~20 A thick silicon oxide layer at a temperature of
~1.5°C above the liquid crystal melting point. At early
times this liquid crystal droplet possesses a rounded shap
as in capillary dominated spreading, but with a sharp borde]re
where the liquid crystal height decreases suddenly ove . _ . -

~250 A to the the wafer value. With increasing time the feufr:m&r;teéhgg ¢/Rp<1. Equations (1)-(5 can be
droplet evolves into two terrages where the lower terrace

possesses a thickness 6f40 while the upper terrace 2, _ _

possesses a thickness-e200 A [Fig. 2(a)]. Both terraces Vine=Cllar D) 2po— (uat p2)] AD
are extremely flat on top and the step edge between the twgnd

terraces is sharper than our horizontal spatial resolution of

~10 um. This system constitutes the simplest system with V2(1+ u)=(CLla)[ (pur+ o) —2u,].  (A2)
which to test the predictions of the de Gennes and Cazabat

model[7] for terraced spreading. Surprisingly we have dis-The boundary conditions for these equationRgtare u,
covered that a hole develops in the upper terrace soon afterW, and d/dr(x,+ u»)=0 where the second condition

In Sec. V we derived an approximate analytic expression
for w, [Eqg. (20)] in the regionR3<r<R,—L where L
~b5¢. This equation is expected to be valid for sméalR,
according to conditior30). In order to check this approxi-
ation we solve numerically the corresponding coupled dif-
rential equations in this appendix, without making the as-
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comes from Eqs(4) and (5) with V;=0 atR;. At R, the = =0.008 with the asymptotic logarithmic approximation for
boundary conditions ar@,=W, and (u;+u)—W;i;—u,  us (Open circleg given in Eq.(20) which is valid in the
=—R,In(R{/Ry)d(u1+ mo)/dr. The later boundary condi- region R;<r<R,—5¢. We also compare the approximate
tion represents the velocity continuity in the first terrace, andexponential expressions fer; and u, (dotted line$ in the
comes from Eqgs(4), (5), and(14) with A= u,—uq at R,. regionR,—5&é<r <R, derived from Eqs(4), (5), (11), and
These coupled equations are solved numerically using é12). We observe good agreement between the approxima-
Runge-Kutta scheme, and the boundary conditions are adions and the exact numerical solution. The potential differ-
justed by the shooting methd@5]. enceu,— uq atr =R, in this figure is much larger than the

In Fig. 4 we compare a numerical soluti¢solid lineg to  corresponding difference at= R3; this is indicative that the
Egs. (Al) and (A2) for R;=2, Ry,=1, R3=0.4, and¢/R; permeation aR, is much greater than the permeatiorRat
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